IoT-cursus/IoT-knopen/Achtergrond/DHZ IoT-knoop met ESP8266
< IoT-cursus | IoT-knopen | Achtergrond
Naar navigatie springen
Naar zoeken springen
Bouw zelf je eigen IoT-knoop met een ESP8266
We bouwen een IoT-knoop met de volgende onderdelen:
Onderdeel | functie | datasheet e.d. | shop |
---|---|---|---|
Wemos D1 Pro | Microcontroller, WiFi | Wemos page | [1] |
BMP280 | Temperatuur- en luchtdrukmeter (barometer) | Bosch BMP280 | [2] |
DHT22 | Temperatuur- en luchtvochtigheidsmeter | DHT22 | [3] |
LDR | lichtmeting | GL5537 | [4] |
pushbuttons | [5] | ||
weerstanden, 10 kOhm, 0.25W | pull-down/pull-up weerstand | ||
breadboard | [7] | ||
breadboard-draden (of montagedraden) | [8] of |
Je moet wel enkele onderdelen solderen, bijvoorbeeld de headers (pootjes) van de Wemos D1 en van de BMP280. Er zijn allerlei variaties mogelijk: je kunt een ander microcontroller-bordje gebruiken, of andere sensoren.
Schema
- DHT22-data heeft een pull-up weerstand van 10kOhm nodig (naar Vcc)
- BMP280 CSB verbinden we met Vcc (3V3), om het I2C interface te selecteren (i.p.v. SPI)
- je kunt deze ook open laten: CSB heeft een interne pull-up weerstand, waardoor deze default met Vcc verbonden is.
- BMP280 SDO verbinden we met GND (0V), om het laagste I2C-adresbit te zetten (i2c adres: binair 1110110 = 0x76 = 118)
- de schakelaar(s) heeft een pull-down weerstand nodig (10kOhm)
- de LDR vormt samen met een weerstand van 10kOhm een spanningsdeler; hiermee zetten we de variabele weerstand van de LDR om in een variabele spanning, die we dan met de analoge input meten (A/D omzetting).
Verbindingen
software (GPIO) | Wemos D1-pin | onderdeel-pin | betekenis |
---|---|---|---|
GPIO4 - Pin(4) | D2 | BMP280-SDA | I2C data |
GPIO5 - Pin(5) | D1 | BMP280-SCL | I2C clock |
A0 - ADC(0) | A0 | LDR out | LDR out |
GPIO14 - Pin(14) | D5 | DHT22 data | DHT22 data |
GPIO0 - Pin(0) | D3 | button 1 | button 1 |
GPIO2 - Pin(2) | D4 | button 2 | button 2 (en ingebouwde LED) |
GPIO7 - Pin(13) | D6 | LED 1 | LED 1 |
GPIO8 - Pin(15) | D7 | LED 2 | LED 2 |
hardware only: | |||
Vcc (3V) | 3V3 | BMP280-CSB | select I2C interface |
GND (0V) | GND | BMP280-SD0 | I2C lowest address bit (0) |
Software (MicroPython)
De MicroPython-software vind je op GitHub: https://github.com/infvo/iot-node-esp8266
- kopieer deze code naar je eigen systeem via de knop "Clone or download".
- kopieer
config.py.example
naarconfig.py
, en pas deze aan voor je eigen configuratie (WiFi netwerk, MQTT-server).
De documentatie voor MicroPython op de ESP8266 vind je op: https://docs.micropython.org/en/latest/esp8266/
Software-tools
De volgende combinatie van tools werkt handig:
- GitHub (en git): voor de code (versiebeheer). Als je wilt experimenteren met de code, is GitHub fork handig: https://help.github.com/articles/fork-a-repo/ N.B. er is ook een GitHub Desktop-tool: niet essentieel, wel handig.
- Atom: een platte-tekst editor met o.a. git en GitHub integratie. Zie: https://atom.io/
- Pymakr-plugin voor Atom: hiermee kun je de REPL van ESP8266-Python bereiken, en direct Python programma's uitvoeren op de ESP8266. Deze plugin kun je laden vanuit Atom: menu Packages->Settings View->Instal Packages/Themes.
ampy
- voor het kopiëren van bestanden tussen de host en de ESP8266. zie: https://learn.adafruit.com/micropython-basics-load-files-and-run-code/install-ampy
Software (Arduino)
Je kunt de ESP8266 ook met de Arduino IDE programmeren. Daarvoor moet je eerst de ESP8266 als processor toevoegen, zie: